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Abstract—An accurate and efficient technique called the thin-
stratified medium fast-multipole algorithm (TSM-FMA) is pre-
sented for solving integral equations pertinent to electromagnetic
analysis of microstrip structures, which consists of the full-
wave analysis method and the application of the multilevel fast
multipole algorithm (MLFMA) to thin stratified structures. In
this approach, a new form of the electric-field spatial-domain
Green’s function is developed in a symmetrical form which
simplifies the discretization of the integral equation using the
method of moments (MoM). The patch may be of arbitrary
shape since their equivalent electric currents are modeled with
subdomain triangular patch basis functions. TSM-FMA is in-
troduced to speed up the matrix–vector multiplication which
constitutes the major computational cost in the application of the
conjugate gradient (CG) method. TSM-FMA reduces the central
processing unit (CPU) time per iteration toO(N logN) for sparse
structures and to O(N) for dense structures, from O(N3) for
the Gaussian elimination method andO(N2) per iteration for
the CG method. The memory requirement for TSM-FMA also
scales asO(N logN) for sparse structures and asO(N) for
dense structures. Therefore, this approach is suitable for solving
large-scale problems on a small computer.

Index Terms—Fast multipole, integral equation, method of
moments, microstrip, multilevel algorithm.

I. INTRODUCTION

M ICROSTRIP structures have been studied extensively
using various types of full-wave analysis techniques.

However, these techniques are still fraught with difficulties
because they usually involve the solution of a very large
system of linear equations. Some authors have analyzed large
microstrip antenna arrays composed of uniform elements as
infinitely large arrays based on a Floquet-type representation
of fields. However, the simplifying assumptions used in this
technique render it incapable of dealing with spurious radia-
tion from the network, edge effects, and irregular structures.
The spectral-domain conjugate gradient fast Fourier transform
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(CG-FFT) method [1] can be used to solve large microstrip
problems. However, a large amount of padding of the FFT is
required to reduce aliasing errors because of the slow rate
of decay of the Green’s function in the spectral domain.
To solve this problem, the spatial-domain CG-FFT, which
applies the CG-FFT method in conjunction with the complex
discrete image technique, has been proposed [2], but for
sparse structures, this method is not very efficient because
many unnecessary interstitial zero paddings are introduced.
The complex discrete image technique has also been used in
conjunction with the fast multipole method (FMM) [3], [4].

The multilevel fast multipole algorithm (MLFMA) [5], [6]
speeds up the solution of the linear equations and reduces
the memory requirement. In this paper, the two-dimensional
(2-D) MLFMA is introduced to solve the linear equations
derived from the full-wave analysis method for microstrip
structures. Here, 2-D MLFMA is the adaptation of the FMM
for the Helmholtz equation [7] first proposed for acoustic
waves and the multilevel algorithm involving interpolation and
anterpolation [8].

This proposed method is most efficient when the transverse
dimension of the microstrip structure is much larger than
its vertical dimension. Hence, we shall term the proposed
technique the thin-stratified medium fast-multipole algorithm
(TSM-FMA). Here, a three-dimensional (3-D) problem is
numerically approximated by a quasi-2-D problem by the
use of the steepest descent path integration [9]–[12] before
MLFMA is applied. The method is exact in as far as nu-
merical computation is concerned (since the accuracy can be
controlled), although it is most efficient for the microstrip
structures.

Furthermore, in this approach, a new symmetrical form of
electric-field spatial-domain Green’s function different from
[13] and [14] is introduced. When the method of moments
(MoM) is used to discretize the integral equation, the differ-
ential operators appearing in the Green’s function are moved
from the singular Green’s function onto the differentiable
basis and testing functions. As a result, the remaining parts
of the Green’s function are less singular. The electric-field
dyadic Green’s function entails Sommerfeld-type integrals
whose highly oscillatory and slowly converging behavior of
the integrands renders their numerical evaluation difficult.
To accelerate the calculation of these Green’s functions, the
Fourier inversion contour is deformed to the vertical branch
cut (which is also the steepest descent path [15]) when the
thickness of the substrate is small compared to its transverse
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Fig. 1. Geometry of microstrip structure.

dimension. This is true for most microstrip structures. This
contour deformation allows a very efficient representation of
the layered-medium Green’s function by a small summation
of 2-D Green’s functions, casting it into a quasi-2-D problem.

The subdomain triangular patch basis function is used to
model equivalent electric currents on the patch, so that the
patch may be of an arbitrary shape. To solve the matrix
equation, conjugate gradient (CG) methods are preferred over
direct methods. The major computational cost in CG lies in
the matrix–vector multiplication.

TSM-FMA reduces the central processing unit (CPU) time
per iteration to for sparse structures and to
for dense structures, from for the Gaussian elimination
method and per iteration for the CG method, where

is the number of unknowns. The memory requirement for
TSM-FMA is also for sparse structures and
for dense structures. It has to be emphasized that the reduction
in computational complexity is not at the expense of numerical
precision—the precision of this method can be controlled to
any desired accuracy. Therefore, the proposed approach is
suitable for solving large problems on a small computer.

II. FORMULATION

The general geometry of a microstrip structure is shown
in Fig. 1. The substrate is assumed to be infinite in the-
plane, and the metallized patches are assumed to be perfectly
conducting and infinitesimally thin. For simplicity, conductor
and substrate losses are neglected, but the thin substrate can
be multilayered.

An electric-field integral equation (EFIE) can be constructed
by enforcing the total electric-field tangential to the surface
to vanish

(1)

where is the dyadic electric-field Green’s function, and
is the surface-current distribution. The prime represents the
variables or operators associated with sources. The excitation
field can be the field of a impinging plane wave or the
field created by a finite source residing within the microstrip
structure.

A. Dyadic Green’s Function

Before discretizing the EFIE (1), equations for the dyadic
Green’s function are presented. The spectral-domain Green’s

function can be derived in a closed form. It can be written
as the sum of TE and TM to-waves propagating in the

- and -direction due to reflection and transmission at the
stratified medium interfaces. Using the formulation
[15], [16], after some derivations, the spectral-domain dyadic
Green’s function in the region can be written in a
symmetric form as follows:

(2)

where

is the wavenumber in free space, ,
and is the generalized reflection coefficient for the
layered medium.

The spectral integration of (2) yields the spatial-domain
Green’s function as follows:

(3)

where

To convert the spectral-domain Green’s function into the
spatial-domain Green’s function, twofold integrals are first
reduced to onefold integrals by coordinate system transform
from Cartesian to polar. Since Sommerfeld-type integrals are
involved, their evaluation is very time consuming since the
integrands are both highly oscillatory and slowly decaying.
To accelerate the evaluation of the Green’s function, different
techniques are used depending on the distance between the
observation and source points.

First, for the case when the observation and source points
overlap or are very close, the dominant factor that causes the
time-consuming evaluation of the integrals is the singularity or
near singularity of the integrands. To overcome this difficulty,
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Fig. 2. Deformation of the Fourier inversion contour to the vertical branch
cut.

the quasi-static terms are first extracted before the integrals are
evaluated numerically. The quasi-static terms, corresponding
to the asymptotic terms of the integrands, can be evaluated in
closed forms by using the Sommerfeld identity. The remaining
integrals, which converge fast, are computed along a contour
deformed off the real axis in the -plane to avoid the surface-
wave pole.

Second, for the case when observation and source points
are well separated, the original integration path in polar
coordinates is first changed to the Sommerfeld integration path
and then is deformed to the vertical branch cut [9], [10], as
shown in Fig. 2. In the course of doing so, contributions from
any pertinent pole singularities are included.

By a change of variable of , and then to
eliminate the singular term appearing in the integrands
and combining the integrations along the two sides of the
vertical branch cut to simplify the integration, the terms
needing evaluation in the Green’s function can be rewritten as

(4)

(5)

(6)

(7)

The formulation up to this point is valid for arbitrary layered
media. For the special case of a substrate backed by a ground
plane

where . For thin-stratified media, the
vertical branch cut is also the steepest descent path. Hence,
integrations along this new path converge exponentially fast
as a result of the exponential decay of the integrands for
increasing or . The pole near the branch point of the TM
term causes the integrand to vary rapidly near the pole. Hence,
more points are needed within this range when using Gaussian
quadrature to perform the integration. The integration range is
first divided into two ranges, one of which is very close to the
branch point. Then the integrations are performed over these
two ranges using standard Gaussian–Legendre quadrature. For
a fixed range, only a few Gaussian integration
points are needed to perform the integrations with good
accuracy.

B. Discretizing the EFIE

MoM is applied to convert EFIE (1) into a linear algebraic
system of equations. The first step is to expand the unknown
current distribution in a set of basis functions

(8)

To model an arbitrarily shaped microstrip geometry, the
vector triangular basis function defined by Rao, Wilton, and
Glisson (RWG) [17] is adopted. This kind of basis function has
been used extensively to model planar and nonplanar vector
surface currents.

The Galerkin procedure is applied to create the matrix
equation

(9)

After moving the differential operators from the singular
Green’s function onto the differentiable basis and testing
functions by applying integration by parts, the matrix element
can be expressed as

(10)
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The computation of the elements of depends on the
nature of the source. If the network parameters are desired,
the impressed incident electric field can be chosen as
the field generated by a series voltage gap source [18] placed
across the edge associated with a single basis function. As
a result, only one nonzero element exists in the excitation
vector , and can be normalized to 1 V. The choice of the
location of the voltage gap depends on the structure of the
patches and the parameters to be calculated. For instance, if
the input impedance of a side-fed microstrip antenna is desired,
the voltage gap can be placed near the end of the microstrip
line feeding the patch. Note, however, that a microstrip line
of moderate length is required to allow a dominant-
mode incident wave to be generated. If the radar cross section
(RCS) is desired, a unit amplitude plane wave of the form

(11)

is assumed to excite the patch antenna, and a plane wave
will be specularly reflected from the grounded dielectric slab,
so that satisfies the appropriate boundary
conditions at the air–dielectric interface and on the ground
plane. The excitation elements are

(12)

Applying reciprocity theorem to (12) leads to

(13)

where is the required strength of an infinitesimal
dipole source to produce a unit amplitude spherical wave

. Since it is necessary to evaluate the far-zone fields
due to currents in order to obtain

the RCS, (13) uses less computational time compared to (12).
The far-zone field when can be derived by using
the stationary phase method [15], [19].

III. T HIN-STRATIFIED MEDIUM FAST-MULTIPOLE

ALGORITHM (TSM-FMA)

In solving the matrix equation (9), the CG method with
floating-point operations per iteration is preferred over

direct methods which require floating-point operations.
The most costly part in a CG method is the matrix–vector
multiplication. To speed up the matrix–vector multiplication,
TSM-FMA (an adaptation of MLFMA [5], [6] to strati-
fied medium Green’s function) is used. After deforming the
integration path from the Sommerfeld integration path to
the vertical branch cut, the integration along the vertical
branch cut can be performed in terms of only very few
Gaussian integration points, resulting in the representation
of the stratified medium Green’s function by a sum of 2-
D Green’s functions. The efficiency of the matrix–vector
multiplication is further enhanced by the adaptation of 2-D
MLFMA.

To implement TSM-FMA, the entire patch is first enclosed
in a large square, which is partitioned into four smaller squares.
Each subsquare is then recursively subdivided into smaller
squares until the smallest squares measure approximately
( ).

As discussed in Section II-A, when the observation and
source points are well separated, the inverse transform of the
Green’s function can be performed with only a few Gaussian
integration points along the vertical branch cut plus a pole
contribution. By substituting the summation expression for
the vertical branch-cut contribution of the Green’s functions
into (10), matrix elements describing interaction between basis
and testing functions residing in well-separated groups can be
written in the form below:

(14)

where represents the pole and points along the vertical
branch cut used in the integration. The above equation can be
rewritten as follows by applying the 2-D MLFMA:

(15)

where
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and are the amplitude and phase angle, respectively,
of the vector , and is a window function. Here,

and are the centers of the th and th groups at
the finest level (first level), which currents and
belong to, respectively.

The matrix–vector multiplication used in each iteration can
be written as

(16)

for , where denotes all elements in the th
group, and denotes all groups nearby of the th group
(including itself). The first term in (16) is the contribution
from the nearby groups, and the last two terms represent
contributions from well-separated groups. The physical inter-
pretation of the last two terms in (16) is that different scattering
centers within a group are first translated into a single center
(aggregation). Hence, the number of the scattering centers is
reduced. Similarly, for each group, the field scattered by all
the other nonnearby group centers can be first received by
the group center (translation), and then redistributed to the
subscatterers belonging to the group (disaggregation).

If we choose each center of the group as a single scatterer
and apply the fast multipole idea from the finest level to the
coarsest level, then TSM-FMA is constructed. TSM-FMA for
matrix–vector multiplication is broken down into two sweeps
[5], [6], [20]. The first sweep consists of constructing an
outgoing plane-wave expansion for each nonempty group at
all levels. The second sweep consists of constructing incoming
plane-wave expansions by combining contributions from well-
separated groups at all levels. Below, we illustrate these
techniques in applying TSM-FMA to the second term of (16).
The third term of (16) can be handled similarly. During the
first sweep, the number of outgoing plane-wave expansion
should increase as plane-wave spectra are aggregated from
a finer level to a coarser level. The expansions for the coarser
level can be obtained from the finer level by interpolation.
Let and be the group centers at level and
, respectively, then the outgoing wave for the coarser level

is described in terms of the samples [5]

(17)

where

are the interpolation coefficients, and is a set of
points in the neighborhood of point . During the second
sweep, the local expansions for smaller groups include the
contribution from the parent group (disaggregation), and from
the well-separated groups at the same level, but not the well-
separated groups at the parent level (translation). A translation
can be calculated by the factor in (16) with FFT and
interpolation because the sampling points are kept the same.
At the coarsest level, only translations need to be calculated
because contributions are from well-separated groups.

The disaggregation also faces the problem of the different
number of the sampling points of. If the local plane-wave
expansions received by a group center at level is

, then its contribution to a child group center at
level can be written as [5]

(18)

where is the weighting function. Substituting the interpo-
lation expression for into (18), and exchanging
the order of the summations lead to

(19)

It is obtained from (19)

(20)

The above operation is called anterpolation [6], [8]. By
using anterpolation, the problem of unequal sampling rates
can be solved with floating-point operations, where

is the number of sampling points. It is shown from (15)
that there are decaying terms with respect to the distance
between the group centers in aggregation and disaggrega-
tion. The group center shifting distances are the same from
one level to another. Therefore, we can choose different
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Fig. 3. Monostatic RCS versus frequency of a circular patch. Radius=
0.65 cm,d = 0:07874 cm, �r = 2:33, (�i; �i) = (60�, 180�), � � �

polarization.

sets of integration points along the vertical branch cut at
different levels to reduce the number of integration points.
Similar interpolation and anterpolation techniques as described
above can be used in aggregation and disaggregation, respec-
tively.

At the finest level, the contribution from the nearby groups
are calculated directly, and is represented by the first term
on the right-hand side of (16). Green’s functions used in
this term are calculated directly with the numerical technique
described in Section II-A. The terms , , and
appearing in the Dyadic Green’s function are functions of
radial distance between observation and source points. In
order to accelerate the calculation of the matrix elements
within the nearby groups, precalculated tables of Green’s
functions versus distance between source and field points
are constructed. These tables are stored as a database and
interpolated repeatedly when accessed. The same Green’s
function tables are valid for any new conductor shape as long
as the layer parameters remain the same.

At each level, the number of plane-wave expansions of
a group is proportional to the dimension of the group. The
number of unknowns is proportional to the area of the patch.
Therefore, if the complexity analysis similar to [5] is per-
formed, for the dense structures, the CPU time and memory
requirement are , where is the number of unknowns.
For sparse structures, only nonempty groups are stored and
calculated, The CPU time and memory requirement scale as

.

IV. NUMERICAL RESULTS

To validate TSM-FMA and to show its versatility in dealing
with arbitrary shaped patches, the monostatic RCS of a circular
patch is calculated as a function of the frequency by using
TSM-FMA. The same result is computed using the plain
CG method, with results shown in Fig. 3. The agreement
between these two methods is excellent. The results also agree
very well with the calculated result obtained by Aberle using
entire domain basis functions, shown in [21]. Fig. 4 shows the

Fig. 4. Comparison of the monostatic RCS versus the frequency between
TSM-FMA and plain CG method. 4� 4 microstrip antenna array,a = 8 cm,
b = 8 cm, L = 3:66 cm, W = 2:60 cm, �r = 2:17, d = 0:158 cm,
(�i; �i) = (60�, 45�), � � � polarization.

Fig. 5. Comparison of the bistatic RCS between TSM-FMA and plain CG
method. 4� 4 microstrip antenna array,a = 6 cm, b = 6 cm,L = 3:66 cm,
W = 2:60 cm, �r = 2:17, d = 0:158 cm, (�i; �i) = (60�, 45�), � � �

polarization, frequency= 2.2 GHz.

monostatic RCS of a 4 4 microstrip array with rectangular
patch elements versus frequency. Fig. 5 shows the bistatic
RCS of a 4 4 element array. All the results are in excellent
agreement with those obtained using plain CG.

Fig. 6 shows the comparison of the CPU time per iteration
and the CPU time used for matrix filling between the TSM-
FMA and the plain CG method. TSM-FMA is more efficient
even for a small number of unknowns. Fig. 7 shows the
memory requirements, the CPU time for matrix filling, and
CPU time per iteration for TSM-FMA as a function of the
number of unknowns. The structures calculated in Figs. 6 and
7 are a square element array with the parameters shown in
Fig. 4, except that the number of elements is changed to
yield different number of unknowns. Because the structures
are not very sparse, the CPU time per iteration and memory
requirements are almost linear with respect to the number of
unknowns.
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(a)

(b)

Fig. 6. Comparison of the CPU time for matrix filling and (a) the CPU time
per iteration versus (b) the number of unknowns between TSM-FMA and
plain CG method.

Fig. 8 shows the bistatic RCS for a 30 30 element
microstrip array with 130 000 unknowns. Only 507.6 Mbyte
memory is needed and the CPU time per iteration is 79.23 s
using one processor of an SGI Power Challenge machine
(R8000). It is clear that TSM-FMA needs much less memory
and takes much less CPU time compared to a standard matrix
solver.

V. CONCLUSIONS

This paper has introduced the TSM-FMA which permits
the efficient full-wave analysis of large microstrip structures.
When compared to the plain CG method, TSM-FMA reduces
the CPU time to for dense structures and
for sparse structures from for the plain CG method.
The memory requirement for TSM-FMA is also for
dense structures and for sparse structures. The
computational complexity for CG-FFT is for the mem-
ory requirement and for the CPU time when the
structure is densely packed. However, when the structure is
sparse (e.g., where microstrip lines lie on top of the substrate

(a)

(b)

Fig. 7. Memory requirements. (a) CPU time per iteration and (b) CPU time
for matrix filling as functions of number of unknowns for TSM-FMA.

Fig. 8. Bistatic RCS for a 30� 30 microstrip antenna array.a = 6 cm,
b = 6 cm, L = 3:66 cm, W = 2:6 cm, �r = 2:17; d = 0:158 cm,
frequency= 2:2 GHz, (�i; �i) = (60�, 45�), � � � polarization.

with much empty space in between), CG-FFT is inefficient
because the empty space has to be padded with zeros in a
2-D-FFT. For instance, for the case of a loop of microwave
integrated-circuit waveguide, the computational complexity
for CG-FFT is and for the memory
requirement and CPU time, respectively (not better than a
plain CG).

For regular grid geometries (e.g., rectilinear meshes with
dense structures), which are well suited for a 2-D-FFT, CG-
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FFT is in fact more efficient because of the efficiency of the
FFT algorithm which has been around for several decades.
However, an algorithm developed for a regular mesh is not
easily adaptable to irregular meshes or arbitrarily shaped
patches. TSM-FMA uses the fast multipole algorithm concept.
At this point, the proportionality constant in front of the
aforementioned computational complexity analysis if still large
compared to FFT. However, TSM-FMA holds high promise
as an efficient algorithm for a patch of arbitrary shape and
arbitrary packing density. It even allows an uneven gridding
of the geometry.
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