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Abstract—An accurate and efficient technique called the thin-
stratified medium fast-multipole algorithm (TSM-FMA) is pre-
sented for solving integral equations pertinent to electromagnetic
analysis of microstrip structures, which consists of the full-
wave analysis method and the application of the multilevel fast
multipole algorithm (MLFMA) to thin stratified structures. In
this approach, a new form of the electric-field spatial-domain
Green’s function is developed in a symmetrical form which
simplifies the discretization of the integral equation using the
method of moments (MoM). The patch may be of arbitrary
shape since their equivalent electric currents are modeled with
subdomain triangular patch basis functions. TSM-FMA is in-
troduced to speed up the matrix—vector multiplication which
constitutes the major computational cost in the application of the
conjugate gradient (CG) method. TSM-FMA reduces the central
processing unit (CPU) time per iteration toO(N log N) for sparse
structures and to O(N) for dense structures, from O(N?®) for
the Gaussian elimination method andO(N?) per iteration for
the CG method. The memory requirement for TSM-FMA also
scales asO(N log N) for sparse structures and asO(XN) for
dense structures. Therefore, this approach is suitable for solving
large-scale problems on a small computer.

Index Terms—Fast multipole, integral equation, method of
moments, microstrip, multilevel algorithm.

I. INTRODUCTION

ICROSTRIP structures have been studied extensivel
using various types of full-wave analysis techniqueé.
However, these techniques are still fraught with difficultie
because they usually involve the solution of a very lar
system of linear equations. Some authors have analyzed la

(CG-FFT) method [1] can be used to solve large microstrip
problems. However, a large amount of padding of the FFT is
required to reduce aliasing errors because of the slow rate
of decay of the Green'’s function in the spectral domain.
To solve this problem, the spatial-domain CG-FFT, which
applies the CG-FFT method in conjunction with the complex
discrete image technique, has been proposed [2], but for
sparse structures, this method is not very efficient because
many unnecessary interstitial zero paddings are introduced.
The complex discrete image technique has also been used in
conjunction with the fast multipole method (FMM) [3], [4].

The multilevel fast multipole algorithm (MLFMA) [5], [6]
speeds up the solution of the linear equations and reduces
the memory requirement. In this paper, the two-dimensional
(2-D) MLFMA is introduced to solve the linear equations
derived from the full-wave analysis method for microstrip
structures. Here, 2-D MLFMA is the adaptation of the FMM
for the Helmholtz equation [7] first proposed for acoustic
waves and the multilevel algorithm involving interpolation and
anterpolation [8].

This proposed method is most efficient when the transverse
dimension of the microstrip structure is much larger than
its vertical dimension. Hence, we shall term the proposed
hnigue the thin-stratified medium fast-multipole algorithm
SM-FMA). Here, a three-dimensional (3-D) problem is
gumerically approximated by a quasi-2-D problem by the
e of the steepest descent path integration [9]-[12] before

MA is applied. The method is exact in as far as nu-

microstrip antenna arrays composed of uniform elements B§rical computation is concerned (since the accuracy can be
infinitely large arrays based on a Floquet-type representatieg@ntrolled), although it is most efficient for the microstrip
of fields. However, the simplifying assumptions used in thructures. o _

technique render it incapable of dealing with spurious radia- Furthermore, in this approach, a new symmetrical form of
tion from the network, edge effects, and irregular structurel€ctric-field spatial-domain Green's function different from
The spectral-domain conjugate gradient fast Fourier transfolk$] @nd [14] is introduced. When the method of moments
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function can be derived in a closed form. It can be written
as the sum of TE and TM ta-waves propagating in the
+2z- and—z-direction due to reflection and transmission at the
stratified medium interfaces. Using t&’., H.) formulation
[15], [16], after some derivations, the spectral-domain dyadic
Green’s functionG in the regionz > 0 can be written in a
symmetric form as follows:

s [helecwic Svbatrain

e Ground Plane & G4 = (565 &/S)(gp _ gTE,R) + Oézo/é(gp +§TM’R)
Fig. 1. Geometry of microstrip structure. + % &YV . &/gp + % &-VV. é’gTM,R
+a-V,V, -4 g™ )
dimension. This is true for most microstrip structures. This
. e : here

contour deformation allows a very efficient representation Sf
the layered-medium Green’s function by a small summation a=d0; + a2
of 2-D Green’s functions, casting it into a quasi-2-D problem. & =& +alz

The subdomain triangular patch basis function is used to < Wy '
model equivalent electric currents on the patch, so that the O =—ag a2
patch may be of an arbitrary shape. To solve the matrix ~EM :i (gTE,R ~TM,R)
equation, conjugate gradient (CG) methods are preferred over k2
direct methods. The major computational cost in CG lies in 5 whg e Ts—TL) S
the matrix—vector multiplication. §'==g2 . ¢

TSM-FMA reduces the central processing unit (CPU) time ’ Wio = 3 " o
per iteration taO (N log V) for sparse structures and @) g™ = ~er? R™ ¢ 2 (o =) ik (2 +2)
for dense structures, fro@(V?3) for the Gaussian elimination w 4 1 - L )
method andO(NN2) per iteration for the CG method, where [ 8—“5 RT®E = il Te=T0) ik (:+2))
N is the number of unknowns. The memory requirement for n #
TSM-FMA is alsoO(N log N) for sparse structures a@{ V') kz=Vk =k}

for dense structures. It has to be emphasized that the reduc%o
in computational complexity is not at the expense of numerical
precision—the precision of this method can be controlled
any desired accuracy. Therefore, the proposed approac
suitable for solving large problems on a small computer.

[§ the wavenumber in free spack? = k2 + k2 = k2,
d RTETM s the generalized reflection coefficient for the
ayered medium.

he spectral integration of (2) yields the spatial-domain
Green’s function as follows:

Il. FORMULATION a-G-& =(a, &) (g — gTE:R) +a.al (P +gT1\'LR)
The general geometry of a microstrip structure is shown 1. a1 1. %/ TM,R
I . T 4+ =& -VV- &g+ -5 &-VV-a '
in Fig. 1. The substrate is assumed to be infinite in the k2 AR g
plane, and the metallized patches are assumed to be perfectly +4&-V.V, - &’gEM (3)

conducting and infinitesimally thin. For simplicity, conductor
and substrate losses are neglected, but the thin substrate ¢B@re

be multilayered. 5 +oo  ptoo y

An electric-field integral equation (EFIE) can be constructed 9" = / / g” dky dk,
by enforcing the total electric-field tangential to the surface Toe v
to vanish

2 X / G(r,v') - J(r') dS' = -2 x E™(r) 1)
s

3 =p,(TE, R),(TM, R), EM.

To convert the spectral-domain Green’s function into the
spatial-domain Green’s function, twofold integrals are first
reduced to onefold integrals by coordinate system transform

. o , rom Cartesian to polar. Since Sommerfeld-type integrals are
is the surface-current distribution. The prime represents t

. . . S U%volved, their evaluation is very time consuming since the
variables or operators associated with sources. The exc'tatfﬂf?egrands are both highly oscillatory and slowly decaying.

ﬁEId E™(r) can be _the field of a im_pi_nging_plgne wave or th%o accelerate the evaluation of the Green’s function, different
field created by a finite source residing within the m'CrOSt”féchniques are used depending on the distance between the

structure. observation and source points.
) ) First, for the case when the observation and source points
A. Dyadic Green's Function overlap or are very close, the dominant factor that causes the
Before discretizing the EFIE (1), equations for the dyadigme-consuming evaluation of the integrals is the singularity or
Green'’s function are presented. The spectral-domain Greené&ar singularity of the integrands. To overcome this difficulty,

where @G is the dyadic electric-field Green’s function, add
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The formulation up to this point is valid for arbitrary layered
media. For the special case of a substrate backed by a ground

plane
b 1 b M ki.d
TM 2iky -
Pole BIM _ Ry™ +e™h-
- K ®’/ 0 1 _,’_RgMeQikl;d

0 Relke] eru/2k + 2t Gr/Y k.

W Im[k]  Branch Cut

REI\'T —
A/ a2t (374
Sommerfeld Integration Path &uvV2k + iu ¢ 3m/4) ki
RYTE _ 2iki.d
i i ier i i i HTE _ 1Y
Fig. 2. Deformation of the Fourier inversion contour to the vertical branch Ro =

1 — REFe2iki-d

. ] . ] e w2k + w2t/
the quasi-static terms are first extracted before the integrals are Ry™ = V2 & 2B 4 &
evaluated numerically. The quasi-static terms, corresponding v wee 1=

to the asymptotic terms of the integrands, can be evaluateq,\jﬂereklz _ /kf — (k + «u?)2. For thin-stratified media, the
closed forms by using the Sommerfeld identity. The remainiRgtical branch cut is also the steepest descent path. Hence,
integrals, which converge fast, are computed along a contifegrations along this new path converge exponentially fast
deformed off the real axis in the,-plane to avoid the surface- 35 3 result of the exponential decay of the integrands for
wave pole. ) increasings or . The pole near the branch point of the TM
Second, for the case when observation and source poifdgn causes the integrand to vary rapidly near the pole. Hence,
are well separated, the original integration path in polghore points are needed within this range when using Gaussian
coordinates is first changed to the Sommerfeld integration pgifiadrature to perform the integration. The integration range is
and then is deformed to the vertical branch cut [9], [10], &st divided into two ranges, one of which is very close to the
shown in Fig. 2. In the course of doing so, contributions frofanch point. Then the integrations are performed over these
any pertinent pole singularities are included. two ranges using standard Gaussian—-Legendre quadrature. For
By a change of variable of, = k +is, and thens = u? 10 5 fixed p = |r — +'| range, only a few Gaussian integration

eliminate the singular term//s appearing in the integrandspoints are needed to perform the integrations with good
and combining the integrations along the two sides of thgcyracy.

vertical branch cut to simplify the integration, the terms
needing evaluation in the Green'’s function can be rewritten Bs

cut.

Discretizing the EFIE

MoM is applied to convert EFIE (1) into a linear algebraic
ar system of equations. The first step is to expand the unknown

_ _iwpig too (k+iu?) H(l)((k+iu2)p) " current distribution in a set of basis functions
or Jo o V2ktiuteiGr/a 0 EA:
(4) J(r) =) Indn(r). (8)
gTM,R n=1
_ whip too AT 1 To model an arbitrarily shaped microstrip geometry, the
T T 4r 0 0 T ROTM vector triangular basis function defined by Rao, Wilton, and
(k + iu2) Glisson (RWG) [17] is adopted. This kind of basis function has
. v JETCRYT Hél)((/f-i-iuQ)p) du been used extensively to model planar and nonplanar vector
'.Qk +oue surface currents.
_ WHO e {RTM % Hél)(k,,p):| (5) The Galerkin procedure is applied to create the matrix
= equation
gTER k

. +o0

W ~TE 1

T drx /0 <R0 * R0TE>
. (k + iu?) H(l)((
V2k + u2ei3r/4) O

EM

k +iu?)p) du (6)

Z-I1=V. 9)

After moving the differential operators from the singular
Green’s function onto the differentiable basis and testing
functions by applying integration by parts, the matrix element
can be expressed as

g

. +OO
iw o B R | ) _ / / neop _ TER

= Ry"+—=—=+R; " += Lo = ds aS" T (r) - I (r')(gP — g )
47 /0 < 0 RTE 0 RIM s, .

1 .
"k + )2k + a2 3w/ Hy (- iu)o) o _/s » / A5V Im(r) Vs
w Sy L 1 / /
+ 20 Res {RTM T Hél)(/fpp)} () In(r') {ﬁ (g7 — g™ ) — g™ (10)
plz
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The computation of the elements & depends on the To implement TSM-FMA, the entire patch is first enclosed
nature of the source. If the network parameters are desireéda large square, which is partitioned into four smaller squares.
the impressed incident electric fiel#'™ can be chosen asEach subsquare is then recursively subdivided into smaller
the field generated by a series voltage gap source [18] placeglares until the smallest squares measure approximately
across the edge associated with a single basis function. B25)2).

a result, only one nonzero element exists in the excitationAs discussed in Section II-A, when the observation and
vector V, and can be normalized to 1 V. The choice of theource points are well separated, the inverse transform of the
location of the voltage gap depends on the structure of tleen’s function can be performed with only a few Gaussian
patches and the parameters to be calculated. For instancéntégration points along the vertical branch cut plus a pole
the input impedance of a side-fed microstrip antenna is desiredntribution. By substituting the summation expression for
the voltage gap can be placed near the end of the microstie vertical branch-cut contribution of the Green’s functions
line feeding the patch. Note, however, that a microstrip linato (10), matrix elements describing interaction between basis
of moderate lengtl{>>\/4) is required to allow a dominant- and testing functions residing in well-separated groups can be
mode incident wave to be generated. If the radar cross sectwiitten in the form below:
(RCS) is desired, a unit amplitude plane wave of the form

o —/ a5 / 48"

inc kmc T
Er = Eoe® T, Eo =1 (11)
ol Z wyo () BE (gl — ')
is assumed to excite the patch antenna, and a plane B4Ve
will be specularly reflected from the grounded dielectric slab, - / ds / dS' V- Jn(r)V,
so thatE™ = E° + E™! satisfies the appropriate boundary "
conditions at the air—dielectric interface and on the ground Z wi; g% (kuj) Hé )(kuj|'r—'r/|) (14)

plane. The excitation elements are

) where k,,; represents the pole and points along the vertical
Vin = —/ Jm - E"dS,  m=12,---,N. (12) Dpranch cut used in the integration. The above equation can be
o rewritten as follows by applying the 2-D MLFMA:

Applying reciprocity theorem to (12) leads to Zrim
, 1 [
v, = - mm Lo gy =X g [ B @ T @)
twito J
aj N 1 27

where 4 /iwpg is the required strength of an infinitesimal ﬂkgm a) - Z wiig* (ku;) o /0 dox
dipole source to produce a unit amplitude spherical wave .
e* /r. Since it is necessary to evaluate the far-zone fields /33,{k<1>( )Tk(1>k ()pl () (15)

E,, (m=1,2,---,N) due to currents/,, in order to obtain w w

the RCS, (13) uses less computational time compared to (1&here
The far-zone field when — 2’ > 0 can be derived by using  ..;
the stationary phase method [15], [19]. mk<1>(a)
= / S T (1)eF3 Pk cos(at @i, )
[ll. THIN-STRATIFIED MEDIUM FAST-MULTIPOLE Sm
ALGORITHM (TSM-FMA)

In solving the matrix equation (9), the CG method with Ko ok coS(atdomp, )
O(N?) floating-point operations per iteration is preferred over = /S dS Vs - Im(r)e w w
direct methods which requir@( N?) floating-point operations. j "

The most costly part in a CG method is the matrix—vector k<1>k(1>( @)

jgrfk(m ()

multiplication. To speed up the matrix—vector multiplication, —ip(atdr, k' _(xs2
TSM-FMA (an adaptation of MLFMA [5], [6] to strati- = > H( kuiPieyi,,)e DT W (p)
fied medium Green’s function) is used. After deforming the = P

integration path from the Sommerfeld integration path to ﬂk, 2la)

the vertical branch cut, the integration along the vertical cos(atd )

branch cut can be performed in terms of only very few = / ds’ Jn(r’)eZk”pkb '
Gaussian integration points, resulting in the representation 75

of the stratified medium Green’s function by a sum of 2- ﬂ (@)

D Green's functions. The efficiency of the matrix—vector Ch -

multiplication is further enhanced by the adaptation of 2-D = / ds’ Jn(r’)@Z HIPR (w%m )
MLFMA. 4
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p;i and ¢;; are the amplitude and phase angle, respectivelyhere

of the vectorr; — r;, and W (p) is a window function. Here,
)

Tk, andry are the centers of thig,)th andkzl)th groups at ;le o () = eikuj/’kb“)%) Cos(ap’+¢k£l+l>k£l>
the finest level (first level), which currentk,,(r) and J,,(r') SR )
belong to, respectively. i”“(l) (@)= > BZZU"(Q)I"

The matrix—vector multiplication used in each iteration can n€Gy

be written as

N a,, are the interpolation coefficients, ard,, is a set of

Z 7o = Z Z 77 points in the neighborhood of point'. During the second

e e sweep, the local expansions for smaller groups include the
) contribution from the parent group (disaggregation), and from

U _a 1 N A the well-separated groups at the same level, but not the well-
F 3wt g [ da Bl @) parated group
J

) € By, Gy
ki€ Kk NE ]‘,1

27 separated groups at the parent level (translation). A translation
; - aj can be calculated by th& factor in (16) with FFT and
Z Tk(1>k£1>(a) Z ﬂk(’1>n(a)—7n interpolation because the sampling points are kept the same.
k1 €8x, neGy At the coarsest level, only translations need to be calculated
, 1 2 . because contributions are from well-separated groups.
- Z wi g (kus) o /0 dex 3ka(1> (@) The disaggregation also faces the problem of the different
7 ' . number of the sampling points ef. If the local plane-wave
Z T,ﬁ(l>k£1>(a) Z ﬁZfUn(a)In expansions received by a group ceritgr 1) at levell + 1 is
K ZBiy n€Gy S‘Zfl“ («), then its contribution to a child group centey, at
(16) level f can be written as [5]

for m € Gy,,,, whereGy,,, denotes all elements in thig,)th [SZ{O],L

group, andBk(U denotes all groups nearby of tkg th group 1 o ’ i

(including itself). The first term in (16) is the contribution = — doy ™=/ ga ()8 (a)
27 LOLI(E ks

from the nearby groups, and the last two terms represent 0

contributions from well-separated groups. The physical inter- Qa1 o in(a, —(x/2)) Fai ~aj

pretation of the last two terms in (16) is that different scattering = Z Wyr € Prykny (@ WSk, (00)

centers within a group are first translated into a single center v'=1

(aggregation). Hence, the number of the scattering centers is (18)

reduced. Similarly, for each group, the field scattered by all

the other nonnearby group centers can be first received \W¥perewy, is the weighting function. Substituting the interpo-

the group center (translation), and then redistributed to thion expression for™(®'=(=/2)) into (18), and exchanging

subscatterers belonging to the group (disaggregation).  the order of the summations lead to

If we choose each center of the group as a single scatterer

and apply the fast multipole idea from the finest level to the ,.; , & a in(aw—(x/2))

coarsest level, then TSM-FMA is constructed. TSM-FMA for Sk<z>]" o Z Wy €

matrix—vector multiplication is broken down into two sweeps =t w® o .

[5], [6], [20]. The first sweep consists of constructing an Z —”a' a,,/,,ﬁ,‘j(]l)k(m)(a,,/)SZZHU(a,,/). (19)

outgoing plane-wave expansion for each nonempty group at v Y

all levels. The second sweep consists of constructing incoming

plane-wave expansions by combining contributions from well- It is obtained from (19)

separated groups at all levels. Below, we illustrate these N

techniques in applying TSM-FMA to the second term of (16). g‘” () = Z Wy aufyﬁ,‘jj § (a,,/)S‘Zj (cu).

The third term of (16) can be handled similarly. During the ! — Wy OB+ R

first sweep, the number of outgoing plane-wave expansion (20)

should increase as plane-wave spectra are aggregated from

a finer level to a coarser level. Thg expansions for the COarseirhe ahove operation is called anterpolation [6], [8]. By

level can be obtained from the finer level by mterpolanorhsing anterpolation, the problem of unequal sampling rates

Let i, andry,, be the group centers at level-1and o0 "he solved withO(Q) floating-point operations, where

l respectlvely, the_n the outgoing wave for the coarser IevgiS the number of sampling points. It is shown from (15)

I+ 1is described in terms of the samples [5] that there are decaying terms with respect to the distance

iy i between the group centers in aggregation and disaggrega-

Koy () = /jké]l+1)k£l)(alﬂ) > ayvby (@) (17) tion. The group center shifting distances are the same from
veU,/ one level to another. Therefore, we can choose different

~aj
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~25 — : T — ! . T -10
_20}+ . J
’g _30F Plain CG
]
m T TSM-FMA
z £
@ ~35F @
Q Q 40
« 2 -
8 _aof @
5 & s
g o ]
2 i) s
? 3" )
= YAVAY, o 4x4 elements )
AVAVA' AWt c
SHNSASD R J
-50 (LOOIFN - £ Unknowns: 2352 v ]
AVAVAVAVAVAVAVAVA!
NNNSAAAANA b D
— Plain CG ??@gxﬁﬁege -80 . T
B65F eeenn TSM-FMA OO0 ] C
VgAVAVAV‘VAV
Vv a0 _s0 . . ; - L . .
2.2 2.3 2.4 25 2.6 27 2.8 2.9 3 3.1 32
_80 L . ; o . ) ,
8 9 10 11 12 13 14 15 frequency (GHz2)
Frequency (GHz)

Fig. 4. Comparison of the monostatic RCS versus the frequency between
Fig. 3. Monostatic RCS versus frequency of a circular patch. Ragius TSM-FMA and plain CG method. 4 4 microstrip antenna array, = 8 cm,
0.65 cm,d = 0.07874 cm, &, = 2.33, (¢%, %) = (60°, 180°), 6 —¢ b =8 cm, L =3.66 cm, W = 2.60 cm, e, = 2.17, d = 0.158 cm,
polarization. ' (67, ¢%) = (60°, 45°), 8 — ¢ polarization.

sets of integration points along the vertical branch cut at
different levels to reduce the number of integration points.

-60} 4
Similar interpolation and anterpolation techniques as described

above can be used in aggregation and disaggregation, respec- . |
tively.
At the finest level, the contribution from the nearby group§ 100k
are calculated directly, and is represented by the first terg 4x4 glements
on the right-hand side of (16). Green’s functions used i i Unknowns: 2352
this term are calculated directly with the numerical techniqug OO —— Plain CG
described in Section ll-A. The termg’, ¢™:% and ¢®M 2 a0l oOoOoOQOgoQO e TSM-FMA
appearing in the Dyadic Green’s function are functions of ;[] O]
radial distancep between observation and source points. In-_ | [ [] [J ]
order to accelerate the calculation of the matrix elements DR
within the nearby groups, precalculated tables of Green’s ) . , , ) )

functions versus distance between source and field points ° v 2 3 4 50 & 70 80 90
are constructed. These tables are stored as a database and 9 (Deg))
'nterF?Olated repeated!y when accessed. The same GregfySs. cComparison of the bistatic RCS between TSM-FMA and plain CG
function tables are valid for any new conductor shape as lomgthod. 4x 4 microstrip antenna array, = 6 cm,b = 6 cm, L = 3.66 cm,
M 7« — ¢ ~ —_ = Q 1oAY — o KO _
as the layer parameters remain the same. W = 2.60 cm, e, = 2.17, d = 0.158 em, (6*,¢") = (60°, 45°), ¢ — 6
. p?lanzatlon, frequency= 2.2 GHz.

At each level, the number of plane-wave expansions 0

a group is proportional to the dimension of the group. The

number of unknowns is proportional to the area of the patcrt?ronostatic RCS of a 4 4 microstrip array with rectangular

;I'here;or;a, 'fhth% complexity analyflls égndla,r to [5]d|s P€rhatch elements versus frequency. Fig. 5 shows the bistatic
ormed, for the dense structures, the time and MMt of 4 4x 4 element array. All the results are in excellent

requirement aré(N'), whereN is the number of unknowns. ..o ment with those obtained using plain CG

For sparse structures,_ only nonempty groups are stored a Eig. 6 shows the comparison of the CPU time per iteration
calculated, The CPU time and memory requirement scalegﬁd the CPU time used for matrix filling between the TSM-
O(Nlog V). FMA and the plain CG method. TSM-FMA is more efficient
even for a small number of unknowns. Fig. 7 shows the
memory requirements, the CPU time for matrix filling, and

To validate TSM-FMA and to show its versatility in dealingCPU time per iteration for TSM-FMA as a function of the
with arbitrary shaped patches, the monostatic RCS of a circutrarmber of unknowns. The structures calculated in Figs. 6 and
patch is calculated as a function of the frequency by usimgare a square element array with the parameters shown in
TSM-FMA. The same result is computed using the plaiRig. 4, except that the number of elements is changed to
CG method, with results shown in Fig. 3. The agreemenield different number of unknowns. Because the structures
between these two methods is excellent. The results also agaee not very sparse, the CPU time per iteration and memory
very well with the calculated result obtained by Aberle usingequirements are almost linear with respect to the number of
entire domain basis functions, shown in [21]. Fig. 4 shows thaknowns.

IV. NUMERICAL RESULTS
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Fig. 7. Memory requirements. (a) CPU time per iteration and (b) CPU time
for matrix filling as functions of number of unknowns for TSM-FMA.
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Fig. 6. Comparison of the CPU time for matrix filling and (a) the CPU time
per iteration versus (b) the number of unknowns between TSM-FMA and
plain CG method.

c RCS (dBsm)

Fig. 8 shows the bistatic RCS for a 3 30 element
microstrip array with 130000 unknowns. Only 507.6 Mbytéi
memory is needed and the CPU time per iteration is 79.23®s
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using one processor of an SGI Power Challenge machine _,q,

(R8000). It is clear that TSM-FMA needs much less memory

and takes much less CPU time compared to a standard matrix=%%

solver.
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Fig. 8. Bistatic RCS for a 30< 30 microstrip antenna array. = 6 cm,

V. CONCLUSIONS

b=6cm L =366 cm W = 2.6 cm,e¢, = 2.17,d = 0.158 cm,

frequency= 2.2 GHz, (8%, ') = (60°, 45°), # — ¢ polarization.

This paper has introduced the TSM-FMA which permits
the efficient full-wave analysis of large microstrip structures.

When compared to the plain CG method, TSM-FMA reducd¥th much empty space in between), CG-FFT is inefficient
the CPU time toO() for dense structures and(N log N) because the empty space has to be padded with zeros in a
for sparse structures frof(N2) for the plain CG method. 2-D-FFT. For instance, for the case of a loop of microwave
The memory requirement for TSM-FMA is alsO(N) for integrated-circuit waveguide, the computational complexity
dense structures an@(N log V) for sparse structures. Thefor CG-FFT is O(N?) and O(N?log N) for the memory
computational complexity for CG-FFT ©(N) for the mem- requirement and CPU time, respectively (not better than a
ory requirement and(N log N) for the CPU time when the plain CG).

structure is densely packed. However, when the structure id~or regular grid geometries (e.g., rectilinear meshes with
sparse (e.g., where microstrip lines lie on top of the substratense structures), which are well suited for a 2-D-FFT, CG-
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FFT is in fact more efficient because of the efficiency of thpo] C. R. Anderson, “An implementation of the fast multipole method
FFT algorithm which has been around for several decades. Without multipole,” SIAM J. Sci. Stat. Compuitvol. 13, no. 4, pp.

923-947, July 1992.

However, an algorithm developed for a regular mesh is ng4) p G shivelyet al, “Scattering from microstrip patch antennas using
easily adaptable to irregular meshes or arbitrarily shaped subdomain basis functionsfFlectromagneticsvol. 14, pp. 1-18, 1994.
patches. TSM-FMA uses the fast multipole algorithm concept.

At this point, the proportionality constant in front of the

aforementioned computational complexity analysis if still large

compared to FFT. However, TSM-FMA holds high promise

as an efficient algorithm for a patch of arbitrary shape and

arbitrary packing density. It even allows an uneven gridding

of the geometry.

(1]

(2]

(3]

(4]

(5]

(6]

(7]
(8]

(9]

[20]

(11]

[12]

(23]
[14]
[15]
[16]

[17]

(18]

[19]

Jun-Sheng Zhaowas born in Shandong Province,
China, on April 17, 1966. He received the B.S.
degree from Shandong University, Jinan, China, in
— W= 1985, the M. Eng. degree from the Second Academy
J"i. . of the Ministry of the Astronautics Industry of
e China (now China Aerospace Industry Corporation),
T. K. Sakar, E. Arvas, and S. S. Rao, “Application of FFT and conjugal Beijing, China, in 1988, and the Ph.D. degree from

gradient method for the solution of electromagnetic radiation fror ? Tsinghua University, Beijing, China, in 1995, all in
electrically large and small conducting bodietfEE Trans. Antennas electrical engineering.

Propagat, vol. AP-34, pp. 635-640, May 1986. 0O From July 1988 to February 1992, and from July

Y. Zhuang, K. L. Wu, C. Wu, and J. Litva, “A combined full-wave CG- 1995 to January 1996, he worked at the Second
FFT method for rigorous analysis of large microstrip antenna arraysscademy of the Ministry of the Astronautics Industry of China. Since
IEEE Trans. Antennas Propagatiol. 44, pp. 102-109, Jan. 1996.  February 1996, he has been a Visiting Post-Doctoral Research Associate at the
V. Jandhyala, E. Michielssen, and R. Mittra, “Multipole-accelerate¢benter for Computational Electromagnetics, University of lllinois at Urbana-
capacitance computation for 3-D structures in a stratified dielectrighampaign. His research interests include fast algorithms for computational

medium using a closed form Green's function,” (Special issue Oflectromagnetics, microwave integrated circuits, and ferrite devices.
Microwave Packages and Interconnects}, J. Microwave Millimeter-

Wave Comput.-Aided Engvol. 5, pp. 68-78, May 1995.

L. Gurel and M. I. Aksun, “Electromagnetic scattering solution of

conducting strips in layered media using the fast multipole method,”

IEEE Microwave Guided Wave Lettol. 6, pp. 277-279, Aug 1996.

C. C. Lu and W. C. Chew, “A multilevel algorithm for solving a

boundary integral equation of wave scatteririgjcrowave Opt. Technol.

Lett, vol. 7, no. 10, pp. 456-470, July 1994.

J. M. Song and W. C. Chew, “Multilevel fast-multipole algorithm for

solving combined field integral equations of electromagnetic scattering,”

Microwave Opt. Technol. Lettvol. 10, no. 1, pp. 14-19, Sept. 1995. Weng Cho Chew (S'79-M’80-SM’86-F'93) was

V. Rokhlin, “Rapid solution of integral eqUatiOnS of Scattering theory ir born on June 9, 1953, in Ma|aysia. He received the
two dimensionsz"\]. Comput. Phy,SVOl 36, no. 2, pp. 414-439, 1990 B.S. degree‘ both the M.S. and Engineer’s degrees‘
A. Brandt, “Multilevel computations of integral transforms and particle and the Ph.D. degree from the Massachusetts Insti-
interactions with oscillatory kernelsComput. Phys. Commuyrvol. 65, tute of Technology, Cambridge, in 1976, 1978, and

pp. 24-38, 1991. ) 1980, respectively, all in electrical engineering.
W. C. Chew and C. C. Lu, “A fast algorithm to compute the wave From 1981 to 1985, he was with Schlumberger-

scattering solution of a large stripComputational Physvol. 107, no. [ Doll Research, Ridgefield, CT, where he was a

2, pp. 378-387, Aug. 1993. Program Leader and a Department Manager. From
C. C. Lu and W. C. Chew, “Electromagnetic scattering of finite stri 1985 to 1990, he was an Associate Professor with

array on a dielectric slab[EEE Trans. Microwave Theory Tec¢hol. the University of lllinois at Urbana-Champaign, and

41, pp. 97-100, Jan. 1993. . is_currently a Professor teaching graduate courses in waves and fields in
e sten o s s oy, homogeneous' medis, and theo of microwaye and oplcal waveguies,
Sci, vol. 31, no. 5, pp. 1215-1224. Sept.-Oct. 1996 and supervising a graduate research program. Fro_m 1989 to 1993, he was
v 3andhyaI’a E Michielssen B §hankér an.d W C Chew. “A co be' Ass_omate'Dl(ector of the Advanqed Constructl_on Technology Center,
bi.ned steepeét descent—fast r’nulltipole algt')rithm fdr tHe fast ’analysis rfylversny of lllinois at Urbana-Champaign, where he is currently the Director
the Center for Computational Electromagnetics and the Electromagnetics

three-dimensional scattering by rough surfaces,” Center Computatioﬁ’ | . R ] h A
Electromagnetics Res. Rep. CCEM 3-97, Mar. 31, 1997. Laboratory. His name is listed in the university'st of Excellent Instructors

K. A. Michalski and D. Zheng, “Electromagnetic scattering and radiatioﬁ:e has authoreWaves_ and Fields in Inhqmqgeneous Me@d@w York: van

by surfaces of arbitrary shape in layered media, part I: ThedBEE ostrand, 1990), published over 175 scientific JOU(naI articles, and p‘resented
Trans. Antennas Propagatol. 38, pp. 335344, Mar. 1990. over 200 confere_nce papers. Hls_ recent researph interest has be'en in the area
M. J. Tsai, F. D. Flaviis, O. Fordhém, and N. G. Alexopoulos, “Modelin®f wave propagation, scattering, inverse scattering, and fast algorlthms_related
planar arbitrarily shaped microstrip elements in multilayered medial® Scattering, inhomogeneous media for geophysical subsurface sensing, and
IEEE Trans. Microwave Theory Teclvol. 45, pp. 330-337, Mar. 1997. nondgstructlve testing _appllc_atlons. H(_e has also pre_vlously a_nalyzeq electro-
W. C. Chew,Waves and Fields in Inhomogeneous Medidlew York: ~ chemical effects and dielectric properties of composite materials, microwave
van Nostrand, 1990. and optical waveguides, and microstrip antennas. He is an associate editor of
J. A. Kong, Theory of Electromagnetic WavesNew York: Wiley, 1975. Journal of Electromagnetic Waves and Applicatioasd Microwave Optical

S. M. Rao, D. R. Wilton, and A. W. Glisson, “Electromagnetic scatteringechnology LettersHe was also an associate editor with tin¢ernational

by surfaces of arbitrary shapelFEE Trans. Antennas Propagawol. Journal of Imaging Systems and Technologyd has been a guest editor of
AP-30, pp. 407-418, May 1982. Radio Sciencenternational Journal of Imaging Systems and Technaolagyl

P. B. Katehi and N. G. Alexopoulos, “Frequency-dependent characterfslectromagnetics

tics of microstrip discontinuities in millimeter-wave integrated circuits,” Dr. Chew is a member of Eta Kappa Nu, Tau Beta Pi, URSI Commissions
IEEE Trans. Microwave Theory Teghvol. MTT-33, pp. 1029-1035, B and F, and the Society of Exploration Geophysics. He has been an Ad
Oct. 1985. Com member of the IEEE Geoscience and Remote Sensing Society, and is
D. M. Pozar, “Radiation and scattering from a microstrip patch on eurrently an associate editor of the IEERANSACTIONS ON GEOSCIENCE AND
uniaxial substrate,IEEE Trans. Antennas Propagatwol. AP-35, pp. REMOTE SENSING, He was a National Science Foundation (NSF) Presidential
613-621, June 1987. Young Investigator in 1986.

REFERENCES




ZHAO et al. THIN-STRATIFIED MEDIUM FAST-MULTIPOLE ALGORITHM FOR SOLVING MICROSTRIP STRUCTURES 403

Cai-Cheng Lu (S'95-M’95) was born in Hubei,
China. He received the B.S. and M.S. degrees i
electrical engineering from Beijing University of
Aeronautics and Astronautics, Beijing, China, in
1983 and 1986, respectively, and the Ph.D. degree
electrical engineering from the University of Illinois
s at Urbana-Champaign, in 1995.

- From May 1996 to May 1997, he worked in the

J'q. Center for Computational Electromagnetics, Univer-

“. sity of lllinois at Urbana-Champaign, first as a Post-
Doctoral Research Associate, and then as a Reseaiui

Jiming Song (S'92-M'95) received the B.S. and
M.S. degrees in physics from Nanjing University,
Nanjing, China, in 1983 and 1988, respectively,
and Ph.D. degree in electrical engineering from
Michigan State University, East Lansing, in 1993.
From 1983 to 1985, he worked in the Department
of Microwave Engineering, Beijing Broadcasting
College, Beijing, China. From 1993 to 1995, he
worked as a Post-Doctoral Research Associate at the
University of lllinois at Urbana-Champaign. He is
currently a Research Scientist and Visiting Assistant

Scientist. He is currently with Demaco, Inc., Champaign, IL. He co-authoréttofessor at the University of lllinois at Urbana-Champaign and a Research
the fast lllinois solver code (FISC), which uses the MLFMA to solve larg&cientist at Demaco Inc., Champaign, IL. His research has dealt with wave
problems in electromagnetic interaction with complex structures. His interestsattering using fast algorithms, wave interaction with inhomogeneous media,
include fast algorithms for computational electromagnetics, electromagneti@nsient electromagnetic field, and high-Tc superconductive electronics.
wave scattering and inverse scattering, SAR image simulation, and processin@r. Song is a member of Phi Kappa Phi. He was the recipient of the 1992
Dr. Lu is a member of Phi Kappa Phi. Outstanding Academic Award given by the College of Engineering, Michigan
State University.

Eric Michielssen (M'95) received the M.S. degree
in electrical engineering from Katholieke Univer-
siteit Leuven (KUL), Leuven, Belgium, 1987, and
the Ph.D. degree from the University of lllinois at
Urbana-Champaign, in 1992.

From 1987 to 1988, he was a Research Assistant
in the Microwaves and Lasers Laboratory, KUL.
In 1988, he was appointed Belgian American Ed-
ucational Foundation Fellow. In 1992, he joined
the Faculty of the Department of Electrical and
Computer Engineering at the University of lllinois at
Urbana-Champaign as a Visiting Assistant Professor, was appointed Assistant
Professor of electrical and computer engineering, and is also the Associate
Director of its Center for Computational Electromagnetics. His research inter-
ests include all aspects of computational electromagnetics, with a focus on fast
multilevel algorithms, the application of combinatorial stochastic optimization
techniques to the design of electromagnetic and optical components, and
computational photonics. He serves as associate editoR#alio Science
and as the technical chair for the 13th Annual Review of Computational
Electromagnetics (ACES’97, Monterey, CA).

Dr. Michielssen was the recipient of the 1995 National Science Foundation
(NSF) Career Award.




